更新时间:2021年03月18日 08时58分23秒 来源:黑马程序员论坛
排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括: 关于时间复杂度:
关于稳定性: 稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。 不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。 名词解释: n:数据规模 k:“桶”的个数 In-place:占用常数内存,不占用额外内存 Out-place:占用额外内存 稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同 冒泡排序 冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。 作为最简单的排序算法之一,冒泡排序给我的感觉就像 Abandon 在单词书里出现的感觉一样,每次都在第一页第一位,所以最熟悉。冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。但这种改进对于提升性能来说并没有什么太大作用。 1. 算法步骤
2. 动图演示 3. 什么时候最快 当输入的数据已经是正序时(都已经是正序了,我还要你冒泡排序有何用啊)。 4. 什么时候最慢 当输入的数据是反序时(写一个 for 循环反序输出数据不就行了,干嘛要用你冒泡排序呢,我是闲的吗)。 5. Java 代码实现 选择排序 选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。 1. 算法步骤
2. 动图演示 3. Java 代码实现 插入排序 插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。 插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。 1. 算法步骤
2. 动图演示 3. Java 代码实现 希尔排序 希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。 希尔排序是基于插入排序的以下两点性质而提出改进方法的:
希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。 1. 算法步骤
2. Java 代码实现 归并排序 归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。 作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为: However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle. 然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。 说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。 和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。 1. 算法步骤
2. 动图演示 3. Java 代码实现 快速排序 快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。 快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。 快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。 快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n²),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案: 快速排序的最坏运行情况是 O(n²),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。 1. 算法步骤
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。 2. 动图演示 3. Java 代码实现 堆排序 堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:
堆排序的平均时间复杂度为 Ο(nlogn)。 1. 算法步骤
2. 动图演示 3. Java 代码实现 计数排序 计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。 1. 动图演示 2. Java 代码实现 桶排序 桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。为了使桶排序更加高效,我们需要做到这两点:
同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。 1. 什么时候最快 当输入的数据可以均匀的分配到每一个桶中。 2. 什么时候最慢 当输入的数据被分配到了同一个桶中。 3. Java 代码实现 基数排序 基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。 1. 基数排序 vs 计数排序 vs 桶排序 基数排序有两种方法: 这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:
2. LSD 基数排序动图演示 3. Java 代码实现 |
推荐了解热门学科
java培训 | Python人工智能 | Web前端培训 | PHP培训 |
区块链培训 | 影视制作培训 | C++培训 | 产品经理培训 |
UI设计培训 | 新媒体培训 | 产品经理培训 | Linux运维 |
大数据培训 | 智能机器人软件开发 |
传智播客是一家致力于培养高素质软件开发人才的科技公司,“黑马程序员”是传智播客旗下高端IT教育品牌。自“黑马程序员”成立以来,教学研发团队一直致力于打造精品课程资源,不断在产、学、研3个层面创新自己的执教理念与教学方针,并集中“黑马程序员”的优势力量,针对性地出版了计算机系列教材50多册,制作教学视频数+套,发表各类技术文章数百篇。
传智播客从未停止思考
传智播客副总裁毕向东在2019IT培训行业变革大会提到,“传智播客意识到企业的用人需求已经从初级程序员升级到中高级程序员,具备多领域、多行业项目经验的人才成为企业用人的首选。”
中级程序员和初级程序员的差别在哪里?
项目经验。毕向东表示,“中级程序员和初级程序员最大的差别在于中级程序员比初级程序员多了三四年的工作经验,从而多出了更多的项目经验。“为此,传智播客研究院引进曾在知名IT企业如阿里、IBM就职的高级技术专家,集中研发面向中高级程序员的课程,用以满足企业用人需求,尽快补全IT行业所需的人才缺口。
何为中高级程序员课程?
传智播客进行了定义。中高级程序员课程,是在当前主流的初级程序员课程的基础上,增加多领域多行业的含金量项目,从技术的广度和深度上进行拓展。“我们希望用5年的时间,打造上百个高含金量的项目,覆盖主流的32个行业。”传智播客课程研发总监于洋表示。
黑马程序员热门视频教程【点击播放】
Python入门教程完整版(懂中文就能学会) | 零起点打开Java世界的大门 |
C++| 匠心之作 从0到1入门学编程 | PHP|零基础入门开发者编程核心技术 |
Web前端入门教程_Web前端html+css+JavaScript | 软件测试入门到精通 |